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ABSTRACT

Space solar power systems for use in the low Earth orbit (LEO)

environment experience a variety of harsh environmental condi-

tions. Materials used for solar power generation in LEO need to be

durable to environmental threats such as atomic oxygen, ultraviolet

(UV) radiation, thermal cycling, and micrometeoroid and debris

impact. Another threat to LEO solar power performance is due to

contamination from other spacecraft components. This paper gives

an overview of these LEO environmental issues as they relate to

space solar power system materials. Issues addressed include atomic

oxygen erosion of organic materials, atomic oxygen undercutting

of protective coatings, UV darkening of ceramics, UV embrittle-

ment of Teflon, effects of thermal cycling on organic composites,

and contamination due to silicone and organic materials. Specific

examples of samples from the Long Duration Exposure Facility

(LDEF) and materials returned from the first servicing mission of

the Hubble Space Telescope (HST) are presented. Issues concern-

ing ground laboratory facilities which simulate the LEO environ-

ment are discussed along with ground-to-space correlation issues.

INTRODUCTION

Solar power systems in LEO will encounter a variety of harsh

environmental conditions including atomic oxygen, UV radiation,

thermal cycling, micrometeoroid and debris impact, and self-contam-

ination. Each of these can adversely affect space power system
performance. Combined environmental interactions can be even

more detrimental. It is therefore crucial to understand the effects of

the space environment on materials when designing LEO solar power

systems.

Materials retrieved from LDEF (5.8 years in LEO) and compo-

nents from the recently serviced HST (3.6 years in LEO) provide a

valuable source of long term in-space exposure information. LDEF

was unique in that it was a long-term materials experiment, and it

orbited in a fLxed orientation with respect to its velocity direction.

The fixed orbital direction resulted in different atomic oxygen to

UV fluence ratios on the leading and trailing edges. The leading

edge received a high atomic oxygen fluence (9X 1021 atoms/cm 2)

and the trailing edge a very low atomic oxygen fluence (3X 103

atoms/cm 2) (Stein, 1992). The leading and trailing edges received

similar UV radiation exposures (11,156 equivalent sun hours (ESH)

and 11,110 ESH, respectively) (Bourassa and Gillis, 1992). This

unique situation allows the evaluation of different LEO environmen-

tal effects, particularly comparisons of UV versus combined UV/

atomic oxygen effects. The HST returned materials received vary-

mg magnitudes of UV exposure. These surfaces also received rela-

tively low atomic oxygen fluences (an estimated average of

--2.4X 1020 atoms/cm 2 for the constantly rotating surfaces). This

low fluence is due to HST's higher orbit (=570 km) compared to

LDEF (=480 decayed to =330 kin). For example, returned HST

magnetometer multilayer insulation (MLI) surfaces had UV expo-

sures varying from=4,480 ESH to=I 1,340ESH (Hitch, 1994); Short

in-space exposure experiments on the Shuttle have also been con-

ducted. This paper gives an overview of LEO environmenta_issues

as they relate to solar power system materials durability, and pro-

vides examples of environmental interactions with materials

retrieved from LDEF and HST.

ATOMIC OXYGEN

Atomic oxygen is formed when UV radiation (<243 nm) from

the Sun photodissociates molecular oxygenin the upper atmosphere

(Banks, Mirtich et al., 1990). In LEO these neutral oxygen atoms

have mean free paths on the order of 104 m, resulting in extremely

low probabilities of reassociation. Atomic oxygen is the predomi-

nant species in LEO (below =1,000 km) CU.S. Standard Atmosphere,

1976). As a spacecraft travels in its orbit (with a velocity on the



orderof7.7km/sec)itramsintotheatomicoxygen(hencetheterm
ramatomicoxygen).ThefluxofatomicoxygenatSpaceStation
altitudesisapproximately3.6×1014atoms/cm2secfornormalinci-
dentramsurfacesand9.1×1013atoms/cm2secforsolarfacing
(sweepingram)surfaces.A numberofprocessescantakeplace
whenanoxygenatomstrikesaspacecraftsurfaceatorbitalveloci-
ties.Theseinclude:chemicalreactionwithsurfaceatomsor
adsorbedmolecules;thermalaccommodation;orrecombination,or
excitationoframspecies(Gregory,1987).Atomicoxygenimpact-
ingspacecraftmaterialsatramvelocitieshasanaverageenergyof
4.5eV(Banks,Rutledgeetal.,1990)andreactswithanddegrades
susceptiblematerialssuchasorganicsubstances,certainmetalsand
oxides.Chemicalreactionsarebelievedtoberesponsibleformost
ramatomicoxygenerosion(Coulter,1986).

Thehighfluxofatomicoxygenimpactingspacecraftsurfaces
inLEOandthehighprobabilitiesofreaction(forexample,---0.14

for polyimide Kapton) (Banks, Rut/edge et al., 1990) result in oxi-

dation rates which can be unacceptable for high fluence missions.

Several thin polymer materials and several plys of composite mate-

rials located on the leading edge of LDEF were completely eroded

away during the 5.8 years in LEO (Stein and Pippin, 1991). Figure

1 shows a fluoropolymer (polychlorotrifluoroethylene) which was

exposed to near normal incidence ram atomic oxygen on LDEE

This sample developed a cone-like morphology which is character-

istic of directed atomic oxygen erosion. All materials which pro-

duce exclusively volatile oxidation products appear to develop such

cones. Similar surface morphologies develop in ground based atomic

oxygen beam facilities if the arrival direction is fixed.

Atomic oxygen protective coatings can be effective in pre-

venting atomic oxygen erosion. The coatings must be nonreactive

to atomic oxygen and serve as a barrier with minimal pinhole and

scratch defects (areas where there is no coating protecting the

underlying material). Typically, films consisting of metal oxides,

fluoropolymer-fllled metal oxides, or elemental metals which

develop nonvolatile protective oxides are used for atomic oxygen

protective coatings. For example, Sit x (1.9 < × <2.0) sputter

deposited films (1300/_ thick) have been selected for protection of

Kapton Solar array (SA) blankets for Space Station. Although such

ii ii 'iiii ....  , iiiiii ,, Iiiiii......

Figure 1.--This fluoropolymer which was located on the leading
edge of LDEF shows the recession morphology which is typical
of directed ram atomic oxygen erosion.

coatings themselves are durable to atomic oxygen, pinhole and

scratch defects allow atomic oxygen to oxidize the underlying poly-

mer near the defect site resulting in atomic oxygen undercutting.

Such defects occur as a result of microscopic irregularities in the

surface, contaminant particles on the surface, and handling or pro-

cessing scratches. Defect densities ranging from 200 to 1,000 defects

per cm 2 are typical for 1300/_ thick Sit x coated Kapton-H (Rutledge

and OUe, 1993). Even with these defect densities, thermal energy

plasma asher ground laboratory tests have indicated that the use of

such protective coatings reduces the oxidation rate of the underly-

ing material by 2 orders of magnitude and the Sit x coated Kapton

is predicted to be durable for 15 years on Space Station (Rutledge

and Olle, 1993). Thermal energy plasma ashers are used as a low

cost source of high flux atomic oxygen. The asher generates an

oxygen atom containing plasma by exciting ambient air with 100 W

of continuous RF power at 13.56 MHz.

Figure 2(a) is an electron micrograph of microscopic cracks in

an aluminized-Kapton sample which was exposed to near normal

incident ram atomic oxygen on the leading edge of LDEF. The

same sample area is imaged in figure 2(b) with the A1 chemically
removed. The exposure to =6× 1021 atoms/cm 2 resulted in under-

cutting oxidation of the Kapton which is far wider than the width of

the initial crack defects. Atomic oxygen undercutting with normal

incidence ram attack can occur because there are atomic oxygen

velocity components which are transverse to the ram direction.

These transverse components are due to thermal velocity, orbital

inclination, and scattering contributions (de Groh and Banks, 1991).

Severe undercutting can threaten the structural stability of thin ma-

terials such as Kapton SA blankets. This is why extensive research

efforts and fabrication improvements have been made which have

resulted in the decrease of SA blanket protective coating defect densi-

ties to levels which make the blankets durable for 15 years in space

(Rutledge and Olle, 1993), Atomic oxygen undercutting can also

cause changes in optical properties. This has been observed in

ground test durability evaluations of solar concentrators (de Groh

and Banks, 1991). Use of a leveling coating on graphite epoxy

solar concentrator surfaces under reflective and protective coatings

can decrease the number of protective coating defects and greatly

improve atomic oxygen durability (Jaworske et al., 1994).

Atomic oxygen interaction with silicones differs greatly from

that with organic polymers. The reaction of atomic oxygen with

most silicones results in the oxidation of methyl groups with an

associated weight loss and shrinkage of the exposed surface. At the

same time, there is a gradual conversion of Sit radicals to Sit 2 on
these silicone surfaces which adds to the mass of the surface. The

net result is that relatively little change in weight occurs for atomic

oxygen exposed silicones, and silicone surfaces typically convert

to silica and craze as a result of shrinkage due to the removal of the

.methyl groups. Because of the small weight change, silicones were

considered to be atomic oxygen durable compared to other poly-

mers which can be oxidatively eroded away, Figure 3 is an optical

micrograph of a silicone (DC 93-500) prior to, and after, exposure

to LEO atomic oxygen on the Environmental Oxygen Interaction

with Materials III (EOIM-I_) shuttle experiment. This sample was

exposed to a ram atomic oxygen fluence of---2.3 × 1020 atoms/cm 2,

and shows surface crazing as it converts to silica with atomic oxygen
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Figure 2.iAluminized-Kapton from the leading edge of LDEF
showing atomic oxygen undercutting at microscopic crocks in

the AI. (a) Cracks in the AI coating. (b) Undercut voids in Kapton
visible after chemical removal of the AL

exposure. Silicones have been used as protective coatings. For

example, silicone was used to protect organic bicycle reflectors on

LDEF. This silicone, along with other silicones on the leading edge

of LDEF, were found to craze and allow erosion of organic material

at crack sites (Banks, Dever et al., 1991). Crazing of silicones and

conversion to silica can be simulated in atomic oxygen ground fa-

cilities with both thermal energy plasma asher and beam facilities.

In-space atomic oxygen durability predictions based on ground

tests are crucial to allow low cost materials selection decisions to

be made in a timely manner. But, accurate predictions of in-space

durability based on ground testing is complicated due to differences

between ground laboratory and LEO atomic oxygen environments.

These differences include oxygen species, energy, arrival direction,

temperature and flux. Facility calibration requires the establish-

ment of a correlation between the ground and in-space environ-

ments. High fluence atomic oxygen durabilities of unprotected

materials can be assessed in ground facilities by calibrating with

witness samples of similar chemistry having known in,space ero-

sion yields. Because the erosion yield of polyimide Kapton-H in

space is well documented (3× 10 -24 cm3/atom) (Knootz et al.,

1991), Kapton is often used as a calibration witness with unknown

materials.

The prediction of in-space durability of protected organic

materials has proven to be difficult due to :the lack of information

concerning the rate of in-space undercutting oxidation at defect sites

in protective coatings. Although :undercutting oxidation is well-

characterized in thermal energy plasma asher systems, the rate of

undercutting oxidation is greatly reduced in LEO where 4.5 eV

atomic oxygen impinges upon protected materials This is due to

differences in the quantifies of atoms necessary to produce equiva-

lent surface erosion of unprotected materials in space and in ther-

mal energy plasma ashers. The ratio of durability in-space to that
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Figure 3._DC 93-500 silicone exposed to atomic oxygen on the
EOIM-III shuttle experiment. (a) Preflight. (b) Postflight showing
silicone to silica conversion crazing.



in thermal energy plasma systems can be predicted using Monte

Carlo computational modeling of atomic oxygen undercutting oxi-

dation. Such computational modeling allows prediction of the shape

and rate of undercutting oxidation. Current predictions indicate

that in-space durability of protected materials may be 20 times that

predicted by thermal energy plasma asher results (Banks et al., 1992).

Accurate correlation between thermal energy plasma exposure and

in-space durability will be achievable through improved modeling

of currently known in-space results such as from LDEF, and addi-

tional high fluence in-space durability evaluation coupled with

ground laboratory evaluation of identical protected materials. Such

space experiments to improve the accuracy of the modeling are cur-

rently under study as part of the NASA In-Space Technology Ex-

periments program.

ULTRAVIOLET RADIATION

Ultraviolet radiation is typically defined as electromagnetic

radiation of wavelengths between approximately 10 and 400 rim.

UV radiation is further divided into regions called near, far and

extreme UV, consisting of wavelengths betwee_ 400 and 300 nm,

300 and 200 nm, and 200 and 10 nm, respectively (Koller, 1965).

Because the extreme UV is strongly absorbed by air, it propagates

only in vacuum and therefore this region is also called vacuum

ultraviolet (VUV). In the LEO environment approximately 10% of

the solar constant (139.6 mW/cm 2) is in the UV region, and only

about 0.1 percent is in the UV which is shorter that 200 nm (Koller,
1965).

Absorption of ultraviolet radiation by an organic molecule

raises the molecule to an excited state. If the energy of the absorbed

photon is equal to or greater than the binding energy of the mol-

ecule, bond breaking can occur. For absorbed photons with ener-

gies lower than the binding energy of the molecule, the energy of

the photon will be re-emitted in the form of fluorescence, dissi-

pated in the form of heat, or transferred as electronic energy from

one functional group on a molecule to another (Slemp, 1988; Dever,

1991). Initiation of a chemical reaction by UV radiation can lead to

degradation of polymer properties such as adhesion, color, flexibility,

hardness, and toughness (Koller, 1965).

In the case of polymers, UV radiation can induce crosslinking

as a result of bond dissociation. Crosslinking will change the proper-

ties of polymers and can result in embrittlement and surface craz-

ing. For example, the tensile strength of Mylar has been shown to

degrade with UV exposure (Slemp, 1988). The mechanical proper-

ties of other polymers such as Fluorinated Ethylene Propylene (FEP)

Teflon and polyethylene located on LDEF were also found to be

negatively affected by solar UV (Stein, 1992). Some polymer

materials however, such as polyimide Kapton, are UV durable due

in part to the strengths of both the imide and aromatic ring bonding
structures.

During the first HST servicing mission the astronauts returned

to Earth with one of the solar arrays and a few other materials. Some

of these materials are being evaluated for environmental durability

by Goddard with the help of the Electro-Physics Branch at Lewis.

These materials include aluminized-Teflon MLI from the magne-

tometers and aluminized-Teflon MLI from the solar array drive arm.

Aluminized or silvered FEP Teflon second surface mirrors are com-

monly used to insulate spacecraft. The aluminized-Teflon outer

layer from both the magnetometers and solar array drive arm were

found to be embrittled on solar facing surfaces. Figure 4(a) for

example, shows a section of MLI surface which is severely cracked

after 3.5 years in LEO. This section of magnetometer MLI received

the highest UV exposure ( 11,340 ESH). Cracking may have been

induced when the UV embrittled pieces were peeled off the magne-

tometer boxes by the astronauts (the MLI was attached by Velcro).

Figure 4(b) shows a crack extending from a Vent hole in the Teflon

MLI from the solar array drive arm. The crack extends all the way

through the Teflon layer indicating embrittlement through the depth

of the film (believed to be 0.13 mm thick). B_2E the magnetometer

and solar array drive arm MLI had surfaces which received lower

levels of UV radiation. Surface cracking has not been observed On

the low UV exposure sides of the magnetometer MLI (4,480 ESH)
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Figure 4.--Embrittled FEP Teflon after 3.6 years in LEO on HST.
(a) Magnetometer MLh (b) Solar array drive arm MLI.



or solar array drive ann MLI. Ground tests performed by Lewis on

the VUV/atomic oxygen durability of aluminized-Teflon for use as

thermal shield material on HST (to shield the solar array bi-stem

booms) did not predict the extent of embrittlement witnessed in the

HST environment. The analysis of the returned materials will be

used to modify ground-to-space correlations to improve the reli-

ability of long term durability predictions based on ground tests.

Teflon embrittlement was also observed on the trailing edge,

or wake side, of LDEE Although the Teflon was not found to be

crazed like the HST Teflon, surface cracks were induced when the

Teflon was cut (Brinza, et al. 1991). Teflon on the leading edge of

LDEF did not appear embrittled (Brinza et al, 1991). This is be-

cause the atomic oxygen fluence was high enough to remove the

embrittled layer. The ratio of atomic oxygen fluence to UV ESH

for the leading edge of LDEF was 8 × 1017 atoms/(cm2.ESH). The

estimated HST thermal shield five year ratio of atomic oxygen

fluence to UV ESH ratio is ---4×1015 atoms/(cm2.ESH). Teflon

from the Solar Maximum Mission's retrieved attitude control sys-

tem which received a high exposure of UV was found to be brittle

also (Liang, et al. 1985). Other factors which affect the degree of

embrittlement besides the UV ESH and atomic oxygen fluence, are

temperature differences in the materials, the number of thermal

cycles, and high energy electron or proton radiation.

Another type of UV radiation damage is solarization of glasses

(Koller, 1965). Ultraviolet radiation induces a photochemical reac-

tion that causes a decrease in ultraviolet transmittance and color

changes. Radiation induced loss of transmittance has been attrib-

uted to color center formation, discoloration due to valence changes

in chemical constituents, or opacification from devitrification (to

cause crystallization) (Firestone and Harada, 1979). The darkening

of glass materials due to UV radiation exposure is well documented

(Firestone and Harada, 1979; Marsik et al., 1978; Weaver, 1965).

An example of a solarization reaction which causes clear glass to

discolor is the UV induced oxidation of manganese ion from Mn 2+

(weakly colored) to Mn 3+ (pink) (KoIler, 1965). Some glass types,

however, prove very resistant to UV radiation. Ceria doped glass is

often used as a cover slide for photovoltaic solar cells because of its

resistance to UV darkening (Ranschenbach, 1980). The following

ranking of resistance to radiation damage has been determined:

excellent resistance - sapphire (alumina), good resistance - fused

silica, fair resistance - optical glass, and poor resistance ultra low

expansion glass (Firestone and Harada, 1979).

Figure 5 shows spectral changes which were induced in a solar

concentrator sample when exposed to 1000 SH of VUV radiation

(de Groh et al., 1992). This sample was durability tested for solar

dynamic power applications for Space Station. The concentrator

sample was composed of graphite epoxy face and back sheets bonded

to an aluminum honeycomb core. The reflective surface had 200/_

of Cu for adhesion to the graphite epoxy and for UV blockage, 1000

/_ of Ag for reflectance, and the outer surface had two transparent

atomic oxygen durable coatings, SiO 2 (700/k) on top ofA1203 (200

/_). The VUV induced spectral changes were attributed:to UV dark-

ening of the SiO 2 and/or A1203 layers due to color center forma-

tion, or due to the formation of AgO X at the A1203/Ag interface

upon A1-O bond breaking (de Groh et ai., 1992). When the same

type of concentrator sample was exposed to in-situ thermal cycling
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Figure 5.---Spectral changes in a solar concentrator sample due to
1000 ESH VUV radiation exposure.

with VUV exposure, the amount of spectral damage was found to

be less. Koller states that the process of solarization can be re-

versed by heat treatment (Koller, 1965). White paint thermal con-

trol materials are also very vulnerable to UV degradation. These

materials need to maintain their optical properties such as a low

solar absorptance. Darkening due to UV radiation exposure can

dramatically affect the temperature of the spacecraft system being

thermally controlled. Exposure of certain white paints to UV radia-

tion in vacuum can degrade the reflectance and cause UV darken-

ing which increases the solar absorptance (Slemp, 1988). When

some of these materials are then exposed to an oxygen environ-

ment, the oxygen "bleaches" the UV darkened surface and the UV

degradation is reversed. This complicates the evaluation of optical

property degradation of UV exposed samples when optical prop-

erty measurements are taken in air. This is why NASA Lewis has

incorporated an in-situ reflectance measurement system in their

atomic oxygen beam/VUV radiation vacuum facility (Stidham et

al., 1993). The solar radiation durability of white paints varies with

chemistry. For example, various formulations of S13G/LO, com-

prised of potassium silicate encapsulated zinc oxide pigment in a

methyl silicone binder, showed significant degradation upon expo-

sure to 1000 ESH VUV which did not bleach when exposed to air.

In contrast, Z-93 andYB-71, comprised of zinc oxide and zinc ortho-

titanate pigment, respectively, in a potassium silicate binder, exposed

to the same VUV environment and measured in air showed mini-

mal changes in solar absorptance (Dever et al., 1991). Z-93-P (very

similar to Z-93) has been atomic oxygen and UV durability evalu-

ated and has been chosen for radiator thermal control material for

Space Station.

Ultraviolet radiation testing of sensitive spacecraft materials

needs to be conducted to evaluate the long term UV durability in

space. As previously mentioned, UV testing can be complicated

due to bleaching effects in air. Another complication is that it is not

easy to obtain a good correlation between the UV lamp spectra and

the AM0 solar spectrum. A xenon short-arc lamp with a quartz

envelope has a reasonable UV solar match from approximately 200



to700nm,buttheintensityismuchstrongerintheinfrared(IR)
region(Slemp,1988).Therefore,xenonlampsareoftenusedin
UVsimulationfacilities.Unfortunately,theintenseIRcanover-
heatthesamplewhenacceleratedtestsareconducted.Therefore,
accelerationfactorsofuptoonly3Xarerecommendedtoavoid
substantialoverheatingofthetestsamples(Slemp,1988).Acceler-
atedexposurescanalsopotentiallyaffectthedamagemechanisms.
DeuteriumlampscanbeusedinvacuumtoproduceVUVradia-
tion,butthespectraisnotanexactmatchtothesolarspectrum,
ThiscanmakeestimatingESHexposureverydependentuponthe
definedwavelengthrangeofinterest.

SynergisticeffectsofatomicoxygenandUVhavebeeniden-
tified.OneexampleisthatthesolarUVradiationwasfoundto
acceleratetheatomicoxygenerosionof Teflonandpossibly
polystyreneandpolymethymethacrylate(PMMA)onLDEF(Stein,
1992).AtomicoxygeninLEOcanalsointeractwiththereaction
intermediatescausedbyUVinducedbonddissociation.Theresult-
ingphoto-oxidationprocessescancausediscolorationofsomepoly-
mers(Dever,1991).Anothercombinedatomicoxygen/UVeffect
isatomicoxygenremovalofUVdarkenedsurfaces,suchaswas
seenonLDEF(Golden,1991).Figure6isaplotofthesolar
absorptanceofawhitethermalcontrolpaint(A276)asafunction
ofrowpositiononLDEF(Golden,1991).Thewhitepaintsamples
onthetrailingedge(row3)andneighboringrows(1,2,4and5)
whichreceivedlowatomicoxygenfluences(<1017atoms/cm2)have
increasedsolarabsorptancevaluesduetoUVdarkening.The
samplesontheleadingedge(row9)andneighboringrows(7,8,10
and11)receivedhighatomicoxygenfluences(>1021atoms/cm2)
andhavesolarabsorptancevaluesnearthatofthecontrolsample
duetoatomicoxygenerosionoftheUVdarkenedsurface(Golden,
1991).
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Figure 6.---Solar absorptance versus LDEF row, and their atomic

oxygen fluence, for A276 white thermal control paint.(Golden,
1991)

THERMAL CYCLING

A vehicle in LEO orbits the Earth approximately every 90 min.

During each orbit it undergoes a heating phase in the sunlight which

is followed by a cooling period in the Earth's shadow. This cycle

creates a considerable temperature fluctuation that induces thermal

stresses on the system components. Direct solar flux is the primary

source for thermal radiation. Although some incident sunlight is

reflected off the Earth's atmosphere (albedo), this occurrence does

not significantly affect the thermal environment of a spacecraft in

LEO. The amplitude of the temperature cycle depends on material

properties such as emittance, absorptance, thermal conductivity, and

specific heat.

The most recurrent defects that are induced by thermal cycling

are microcracking of substrates or coatings, and delamination of

coatings. Microcracking in an atomic oxygen protective coating

exposes the underlying material to atomic oxygen, which could be

damaging to the particular system. Figure 7 is a backscattered elec-

tron micrograph image of coated graphite epoxy which was located

on the leading edge of LDEF. This backscattered electron image

shows thermal cycle induced microcracks. These cracks became

pathways for atomic oxygen attack of the underlying graphite epoxy.

Relatively large undercut areas were observed at the crack sites.

The temperature variations induced during thermal cycling pose

a particular threat to coated surfaces if the coating and substrate

have substantially different coefficients of thermal expansion (CTE)

and delamination occurs (Brady and Banks, 1990). Delamination

of coatings can pose a host of problems depending on the coating

purpose, but examples include particulate production, environmental

degradation of the underlying material, and excessive system heat-

ing. Figure 8 shows an example of coating failure due to thermal

cycling. This is a SiO 2 coated (14,000/_) FEP Teflon sample which

was tested as a potential material for the HST thermal shields. This

material, as well as a multilayer metal oxide coated Teflon material,

was found to fail by delamination and spalling of the glass coating

with rapid thermal cycling exposure. The production of thousands

of small pieces of glass in the HST environment would have been

disastrous. These coated materials were eliminated as potential ther-

mal shield materials due to their poor performance under thermal

cycling exposure.

Rapid thermal cycling testing of solar array blanket coupons

for potential use on the Space Station was conducted by the Photo-

voltaic Branch at Lewis (Scheiman and Smith, 1991). The tests

Figure 7.--Backscattered electron micrograph showing thermal
cycle induced microcracks in an AI/Cr coated graphite epoxy
sample which was located on the leading edge of LDEF.



Figure8.---Severecoatingdelaminationandspallingfailure
attributec_to_en'rm_ cyc_ This SiO2 coated Teflon sample
was elimin_:ed a_S_ _ HST therma_ shield• material due
to thetherm_ cvc_ ini_uced failure,

were conducted to evaluate structural fatigue of welded intercon-

nects and panel components with prolonged exposure to thermal

cycling. After Completion of up to 172 000 cycles in a ground test

facility (- 180 °C to + 120 °C) the samples showed only a slight

decrease in performance (a decrease of maximum 6 percent). The

performance :degradation was primarily due to a therma_ stress

induced l'ippling effect which caused fatigue cracks in the copper

circuitry, as weiI asan increase in series resistance of the solar cells

and intercOnnects (Scheimand and Smith, 1991 ).

Metal matrix composites (MMC) such as graphite/Mg or

graphite[A1 exhibit thermal strain hysteresis and residual strain dur-

ing thermal cycling (Potter. 1988; Le and Steckel, 1992). Both of

these effects could compromise structural stability in the space

environment, Analysis of LDEF post-flight samples, however,

indicate that extensive thermal cycling causes strain hardening in

the matrix which actually stabilizes the behavior of MMC's and

decreases the magnitude of hysteresis. Graphite/A1 composites have

proven to be remarkably stable (Le and Steckel, 1992).

A synergistic effect is believed to be caused by the interaction

of thermal cycling (and the corresponding temperature limits) with

UV radiation such as an increased embrittlement of polymers. This

is attributed to the decreased residence time of free radicals on the

damaged surface with increasing temperature. Temperature is also

known to affect the atomic oxygen reaction rate of materials (Gre-

gory, 1986), and also plays a role in contamination residence.

MICROMETEOROIDS AND DEBRIS

The presence of micrometeoroids and debris (M&D) particles in

the LEO environment is a potential hazard to solar power systems.

While micrometeoroids are of natural origin, space debris is man-

made. Debris particles include remnants of collided or exploded

spacecrafts, wastes, and refuse from abandoned operations such as

nonfunctional satellites. Micrometeoroids and debris fragments impact

spacecrafts with high:velocity and:energy, causing surface cratering

or penetrations. The particles themselves actually vaporize :upon

impact which makes it difficult to determine their origin through chemi-

cal analysis. Often, however, there is enough residual material in the

impact craters to obtain an elemental breakdown Elements such as

Fe, Mg, Si, S and Ca are characteristic of natural impacters; A1, Ti,

Zn, and Cu are typical for man-made :artifacts (Mandeville, 1992;

Simon et al., 1992). The average velocity for debris particles ranges

from 10 to 13 km/sec and is about 19 km/sec for micrometeoroids

(Meshishnek et al., 1992). Although various materials naturally re,

spend somewhat differently to high, velocity impacts, the damage at a

typical collision site is highly localized and does not extend beyond

the immediate area of the impact.

Impacts on uncoated metals result in localized surface cratering

(Meshishnek et al., 1992; Mirtich et al,, 1992; Stella, 1991). A

crater is usually circular in shape with a raised rim extending above

the surface and a central melt region. Typically impacts on coated

metal surfaces (nickel-coated copper, or rhodium on aluminum for

example) produce a similar cratering as impacts on uncoated metal

surfaces. Occasional cracking and/or delamination of the coating

is observed in the vicinity of the crater (Meshishnek et al., 1992;

Mirtich et al., 1992). Glass and ceramics behave somewhat differ-

ently. The damage area on fused silica is mostly confined to the

actual impact site. Some radial cracking may occur, the propaga-

tion, however, is limited (Meshishnek et al., 1992). An interesting

feature of impacts on glass is the protrusion of glass fibers from the

melt crater (Wiedlocher, 1992) The examination of six glass types

(BK-7, Fused Silica, Soda.lime-silica, Pyrex, Vycor and Zerodur),

which were flown on LDEF, revealed that a 69 month exposure to

the M&D environment did not change the overall physical strength
of the samples (Wiedlocher, 1992).

Impacts on organic composite materials, which are primarily

composed of graphite epoxy, may cause breakage of the outer lay-

ers of the matrix, internal ply delamination and local fiber fractures

(Meshishnek et al., 1992; Tennyson and Manuelpillai, 1992).

Metallized and unmetallized polymeric films show typical crater

characteristics or circular perforations upon impact. Perforations

in protective coatings on organic substrates, such as aluminized-

Kapton or protected graphite epoxy, increase the susceptibility of

the substrate to atomic oxyge n erosion (Meshishnek et al, 1992).

Some more unusual responses to M&D :impae_ are blistering of

surface coatings, splattering of ejected material....... :into neighboring

areas and extensive cracking in ceramics (MeShishnek et al., 1992).

Durability evaluations of polished metai reflector surfaces for

potential use in solar dynamic systems show that typical M&D dam-

age was sufficiently small so as to have _ally no overall effect

on the specular reflectance of the samples and therefore would not

have a significant effect on the performance of the system (a loss of

less than 1 percent of specular reflectance) (Mirtich et al., 1988;

Mirtich and Kerslake 1990). Data was obtained from three satel-

lites that had been exposed to a M&D environment for up to 20

years (SERT U, OSO IlI and LDEF). The evaluated:material was

A1 on stainless steel (Mirtich et al., 1988; Mirtich: and Kerslake,

1990). However, this particular material is not very susceptible to

deterioration caused by other environmental threats such as atomic

oxygen or UV radiation. As previously mentioned, the formation



ofcracksandopeningsinatomicoxygenorUVprotectivecoatings
increasesthevulnerabilityofmaterialslikegraphiteepoxyorpoly-
mericmaterialstoatomicoxygenerosionandUVradiation.Other
potentialsynergisticinteractionswithimpactsincludefacilitation
ofspacecraftchargingeffectsandcontaminationduetovaporiza-
tion(Potter,1988).Itisalsoobservedthatpre-impactexposureof
amaterialtooneoftheseenvironmentalagentscantriggeran
amplifieddestructiveresponsetoaM&Dimpact.

Figures9and10demonstratevariousresponsestoM&D
impactswhichhavebeenintensifiedthroughfurther(orprevious)
exposuretootherenvironmentalagents.Figure9showsanimpact
onasilveredTeflonthermalcontrolblanket(0.12to0.14mmFEP
Teflonontopof1000to1500/_Silver,200to400/_Inconeland,
0.05to0.076mmChemglazeZ306,apolyurethanebasedpaint)
flownonLDEF.Theimpactcreatedamicroscopicexplosionthat
causeddelaminationoftheTeflonwhichallowedfurtherdegrada-
tionof the silver through oxidation. Optical micrographs in figure 10

depict the effect of pre-impact UV exposure on a MLI blanket. The

MLI overlay was located on the HST solar array drive arm that had

been exposed to the space environment for 3.6 years. Figure 10(a)

shows an impact on the UV shaded side of the ann. The damage is
localized and delamination is confined to an area of about 4X the

size of the impact crater. Figure 10(b) shows an impact of the same

magnitude on the UV exposed side. Extensive delamination (about

16X the size of the impact) has occurred. Variations in the veloci-

ties or size of these particles may have contributed to these differ-
ences also.

These findings indicate that typically the M&D climate is not

detrimental to a system, but that it is the synergistic interactions

with other deterioration factors which are potentially harmful. How-

ever, the number of M&D impacts which are large enough to pro-

mote interaction is exceptionally small. Pinhole defects or scratches
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Figure 9,_lmpact site from a LDEF silvered-Teflon sample. The
impact caused delamination and subsequent oxidation of the
Ag layer,

Figure 10,_lmpact sites from HST solar array drive arm MLI.
(a) Solar shaded side with very localized damage (4X impact
crater). (b) Solar facing side with large delaminated damage
site (16X impact crater).

in atomic oxygen protective coatings, that have been formed during

fabrication and handling, are far more numerous and are a greater

threat to the durability of solar power systems (Banks, Rutledge

et al., 1991).

CONTAMINATION

LEO environment interaction induced contamination has

become a serious threat to the performance of sensitive spacecraft

systems. The major threat is degradation of optical surfaces. Ther-

mal control materials can experience an increase in solar absorp-

tance which can result in system over heating. Other sensitive power

system optical surfaces include solar cell cover glass, and reflective
or refractive solar concentrators.

The sources of contamination typically are outgas products of

materials exposed to a vacuum environment, and fragment prod-



ucts from atomic oxygen and/or UV radiation interaction with

materials. Contamination from non-outgassed sources such as

thruster fires and water dumps is not discussed here. To reduce the

threat of contamination from volatile outgas products, materials for

use on spacecraft systems need to meet standard outgassing require-

ments. Materials are considered to be space flight qualified if they

meet ASTM E 595 Standard Test Method for Total Mass Loss and

Collected Volatile Condensable Materials from Outgassing in a

Vacuum Environment. This test standard determines the volatile

content of materials when exposed to a vacuum environment. The

volatile condensable outgas products themselves can degrade space-

craft components as they deposit on sensitive components. Ultra-

violet radiation and atomic oxygen fixing of these products further

worsens the problem as the product often UV darkens as it is fixed

to the surface. Although the ASTM E 595 standard test method

identifies materials with unacceptable quantities of outgas prod-

ucts, it does not evaluate fragmented outgas products from addi-

tional LEO environmental interactions with atomic oxygen and UV
radiation.

Because synergistic environmental interactions have not been

considered when qualifying spacecraft materials, some materials

have been deemed space flight worthy which pose serious LEO

contamination threats. One of the primary sources of this type of

contamination are silicones (used as lubricants, adhesives, coatings,

etc. on spacecraft systems). Many silicones which meet the outgas

requirements under ASTM E 595 have been found to cause serious

contamination on spacecraft components and in ground-test facili-

ties. As previously mentioned, silicone materials interact with atomic

oxygen and eventually form a SiO 2 surface layer. This is why sili-

cones were believed to be durable to atomic oxygen. During the

process of silicone to silica conversion volatile outgas products can

be formed which arrive on neighboring surfaces. If atomic oxygen

is arriving at the surface which is also receiving a silicone contami-

nation flux, then conversion of the silicones to silica can occur re-

sulting in a nonvolatile contaminate which can gradually darken

with UV exposure. LDEF was found to have this type of silicone

contamination over most of its surfaces (Stein, 1992; Stein and Pip-

pin, 1991). Figure 11 shows a close-up of a tray of materials which

was 38 ° from the ram direction on LDEF on the Solar-Array Mate-

rials Passive experiment (Banks, Dever et al., 1991). The light col-

ored samples (rectangular, square and tensile shaped) are silicones

which were not properly outgassed and produced large quantities

of contaminants on neighboring surfaces and samples. A shadowing

effect can be seen to the right of each sample where the angled

atomic oxygen attack turned the contaminant brown (there was very

low fluence of atomic oxygen in the shadowed area) (Banks, Dever

et al., 1991). Silicone contamination was also observed on materi-

als returned from the Solar Maximum Mission spacecraft (Brinza

et al., 1991).

Contaminating silicones are believed to be able to produce

contamination products even after a surface SiO 2 has formed. ESCA

depth profiling analysis of atomic oxygen plasma exposed silicone

indicates that the SiO 2 conversion layer continues to thicken with

atomic oxygen fluence (de Groh et al., 1992). In addition, surface

crazing, which occurs during conversion to SiO 2, appears to progress

with increased atomic oxygen fluence, exposing fresh silicone

(Whitaker et al., 1992). Both of these findings provide evidence

Figure 11 .--Section of the LDEF Solar Array Materials Passive
Experiment showing dark contamination to the right of light
colored silicone samples.(Banks, Rutledge, et al. 1991)

that silicones can continue to be a source of contamination even

after a surface SiO 2 layer has developed during atomic oxygen

exposure.

Contamination, particularly silicone contamination, is observed

in ground test facilities (carbon based contaminates would be oxi-

dized by the atomic oxygen). If the rate of contaminant arrival is

sufficiently high the Kapton fluence calibration witness samples

can become partially or fully coated with a contaminant film,

effecting calibration measurements. Figure 12 shows a Kapton

calibration sample that has been completely coated with a thick

oxidized :silicone based contaminant layer during thermal energy
plasma asher exposure. Care must be taken to eliminate unwanted

sources of silicone during testing. The plasma ashers at Lewis are

modified to remove silicone components (such as the silicone

Figure 12.--Kapton calibration coupon covered with a thick

silicone contamination film after thermal energy atomic oxygen
plasma asher exposure.
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containing rubber gasket which comes with the asher), and vaseline

is used instead of silicone containing vacuum greases. Once an

atomic oxygen facility gets contaminated, particularly plasma ashers,

it is very difficult to clean it.

Molecular contamination was found all over LDEF, yet LDEF

was still considered to be a clean spacecraft (Stein, 1992). Multiple
internal and external sources of contamination were identified on

LDEF (Stein and Pippen, 1992). Three general contaminant catego-

ries have been defined for the LDEF spacecraft. These are: carbon

based films (from paint solvents, polymeric films and composite

materials), silica or silicone based film (from adhesives, coatings,

and paints) and particulates (from fibers, pollen, dust and degraded

materials) (Stein, 1991). Heavy molecular contamination was found

to have been line-of-site deposited (Stein and Pippen, 1991). The

heaviest deposits were found on Solar UV sides. Carbon contami-

nating contaminants were found to be more prominent on the trail-

ing edge of LDEF, while Si containing contaminants were more

prominent on the leading edge of LDEF (Stein, 1992). This is par-

tially due to atomic oxygen erosion of C contaminants from the

leading edge. Results from LDEF contamination studies indicate

that non-silicone materials and non-contaminating lubricants and

polymers should be used on future spacecrafts (Stein, 1992).

CONCLUSIONS

Atomic oxygen can be very damaging to suspectable space-

craft materials. Organic materials which have volatile oxide prod-

ucts can be completely removed by high fluence atomic oxygen.

Typically, thin film metal oxide coatings provide protection against

atomic oxygen attack if the density of protective coating defects is

sufficiently small. In-spaee atomic oxygen durability predictions

based on ground tests are crucial for allowing low cost materials

selection decisions to be made in a timely manner. However,

accurate materials durability predictions are difficult to achieve due

to differences in atomic oxygen environments (energy, species, tem-

perature, arrival direction) between LEO and ground facilities, High

fluence atomic oxygen in-space exposure tests are needed to deter-

mine reliable ground-to-space durability correlations.

Ultraviolet radiation can degrade materials through processes

such as polymer embrittlement or UV darkening. A particular threat

to space power materials is UV darkening of thermal control mate-

rials. Increased solar absorptance can dramatically affect the

temperature of the spacecraft system being thermally controlled.

Ground-based UV exposure testing is complicated by differences

between UV lamp spectral intensity and the AM0 solar spectrum,

by potential acceleration artifacts, and the bleaching phenomena

some materials experience when brought to atmosphere.

Thermal cycling of space power materials can result in

microcracking and delamination of coatings. Typically microcrac-

king is not a serious structural threat, but cracking or delamination

of coatings can cause a host of problems. Thermal cycling and the

corresponding temperatures extremes can have significant syner-

gistic effects with UV radiation, atomic oxygen and contamination.

Although various materials respond differently to M&D

impacts, the damage at an impact site is usually highly localized,

not extending significantly beyond the immediate area of the impact.

Therefore, the M&D climate is typically not functionally detrimental

to a system, but synergistic interactions with other environmental

threats (such as atomic oxygen attack at impact sites) can be poten-
tially harmful. _'

Self-induced contamination is a threat to solar power optical
and thermal control surfaces. Carbon and silicon based films are

the main two contaminant film types. Based on LDEF results, car-

bon based films are typically more prominent on high UV/low atomic

oxygen fluence surfaces, while silicon based films are more promi-

nent on high UV/high atomic oxygen fluenee surfaces. Self-induced

contamination is a serious spacecraft materials durability problem.

Unfortunately, current outgas contamination test methods do not

account for crucial interactions of UV radiation and atomic oxygen

during thermal vacuum testing.

Although there are many materials durability issues and con-

cerns with respect to the LEO environment, numerous durable ...........

materials have been identified and used for solar power applica-

tions. The LEO environment is difficult to simulate, yet valid

information on durability can be obtained with accurate ground to

in-space calibration. Solar power materials need to be evaluated

for environmental durability to ensure sustained system performance.
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